Surface Chemistry and Electron-Transfer Kinetics of Hydrogen-Modified Glassy Carbon Electrodes
نویسندگان
چکیده
Gas-phase modification of glassy carbon (GC) was investigated in an attempt to make a C-H-terminated surface that is resistant to oxidation. By using a hot filament technique, hydrogen radicals were generated from a flow of hydrogen gas, and then the radicals attacked glassy carbon electrode surfaces. The modified glassy carbon surfaces were characterized first by X-ray photoelectron spectroscopy, where the shape of the carbon 1s band shows a distribution of carbon oxidation states different from a fresh polished surface. The oxygen-to-carbon atomic ratio is low (<3%) and stays low in air for weeks. Hydrogen treatment had minor effects on Ru(NH3)6 cyclic voltammetry but increased ∆Ep for Fe3+/2+ from 176 to 466 mV for a scan rate of 0.2 V/s. There is no significant difference in voltammetry at fresh polished glassy carbon surfaces or hydrogen-modified surfaces for dopamine, Fe(CN)6, and ascorbic acid. Raman spectroscopy of modified surfaces shows a small decrease in carbon disorder compared to the fresh polished glassy carbon with both microscopic and macroscopic observations. All these observations are consistent with the etching of the GC followed by formation of a hydrogenterminated carbon surface. We attribute the major decrease in electron-transfer rate for aquated Fe3+/2+ to the absence of catalytic carbonyl sites on the hydrogen modified carbon.
منابع مشابه
Electroanalytical performance of carbon films with near-atomic flatness.
Physicochemical and electrochemical characterization of carbon films obtained by pyrolyzing a commercially available photoresist has been performed. Photoresist spin-coated on to a silicon wafer was pyrolyzed at 1,000 degrees C in a reducing atmosphere (95% nitrogen and 5% hydrogen) to produce conducting carbon films. The pyrolyzed photoresist films (PPF) show unusual surface properties compare...
متن کاملElectrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue
The redox properties of sulfite ion has been examind using cyclic voltammetry in acetonitrile solvent at the surface of gold, pelatin and glassy carbon electrodes. It has bben found tha, sulfite ion exhibits two electron oxidation peak with EC’ mechanism. A novel chemically modified electrode containing Prussian blue complex and multi wall carbon nanotubes (MWCNs) was achieved on the surface of...
متن کاملElectroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode
In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...
متن کاملSurface Modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode for Ethanol Electro-Oxidation
In the present study, Nickel-Copper nanoparticles were electrodeposited on glassy carbon electrode (GCE) by using electroplating deposition method. The prepared electrode was characterized by scanning electron microscopy (SEM) and elemental mapping analysis. Results showed that Ni-Cu nanoparticles with a high density are distributed at the surface of the glassy carbon electrode. Subsequentl...
متن کاملApplication of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
متن کامل